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In this paper, we present a method which accelerates the iterative process of self-con- 
sistent calculations of the electronic structure of atoms, molecules, and crystals. The theory 
is based on the behavior of potential parameters during the iterative process. A criterion 
of convergence is established. The convergence of the iterative process is fastest when, at 
the beginning of each iteration, the potential is a linear combination of the potentials of 
previous iterations. As many previous iterations should be combined as there are para- 
meters describing the potential; the theory and method are applied in the test case of the 
molecules Nz and CO with very good results. 

1. STATEMENT OF THE PROBLEM 

The calculation of the electronic structure of atoms, molecules, and crystals is an 
iterative procedure. In each iteration one uses an initial potential 

di)(r). 

The Schradinger equation is solved for each occupied one-electron state, an electronic 
density is constructed from the wave functions, and the Poisson equation is solved 
to obtain a final potential 

v(f)(r). 

For the next iteration one starts from an initial potential which is a linear combination 
of the initial and final potentials of the previous iterations. Since the pioneer calcu- 
lations of Hartree [l], has become common practice to generate the initial potential 
of iteration i + 1 according to 

vF;11 = (1 - a) 0:) + olv:f), (1) 

where 01 is a number greater than zero and less than one. The choice of 01 depends on 
the problem and on the experience of the researcher. For atoms and simple molecular 
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systems, values as large as 0.5 can be used [l]. For systems with many atoms, (II has 
to be small, otherwise the iterations will not converge. 

To speed up the iterative process, Pratt proposed a scheme to determine CX, which 
has a simple graphical interpretation [2]. For each point r, we plot the values z+) and 
u(f) for iterations i and i - 1, as in Fig. 1. Through the points we pass a straight line. 
The crossing of this line with the dashed line of 45” inclination determines the initial 
potential for iteration i + I. The Pratt scheme can be simply understood since the 45” 
line is where the final solution should be since ZY and r~(f) are equal. 

“if) 

FIG. 1. The Pratt scheme. 

Ultimately, the Pratt scheme is a linear and local theory of the iterative process 
since 

u(f)(r) = ~(f)[u(i)] 

is approximated as 

N(r) = j T(r, r’) zP)(r’) dr’ + c(r). (2) 

It is a local theory, in the sense that it assumes that v(f)(r) depends only on the value 
of ati) at r. Thus 

T(r, r’) = t(r) 6(r - r’) (3) 
or 

C(r) = t(r) H(r) + c(r). (4) 

Equation (4) combined with Eq. (1) and forcing 

yields 

0$(r) = u&(r) 

a(r) = l/(1 - t(r)). 

(5) 

(6) 

This is the Pratt coefficient of mixing, which is position dependent. 
The Pratt scheme has been widely used for atoms [3,4], but has been avoided for 

molecules and crystals, when the local character of the scheme becomes inadequate. 
To understand the inadequacy of the Pratt scheme for molecules, consider the example 
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of CO. If one raises the initial potential near the C atom, then electrons move toward 
the 0 atom, thus increasing the final potential there. In effect the kernel T(r, r’) in 
Eq. (2) may have long-range components for molecules. This invalidates the local 
approximation of Eq. (3). Achieving self-consistency in molecules is largely a problem 
of determining the right amount of charge transfer from one atom to another. This 
charge transfer is not taken care of by the Pratt scheme. 

During the iterative process, one deals with potentials that increase smoothly 
from the nuclei and, for that reason, the potentials can be described by few parameters. 
We shall assume that at the beginning and at the end of one iteration, the potential 
can be written as 

u(r) =hW + C ~(N!LN(r), (7) 
N 

where VN) are parameters and the f’s are functions that do not change during the 
iterative process. Thus, looking for self-consistency in the potential becomes equiv- 
alent to the simpler problem of looking for self-consistency in the parameters V). 
Thus it is possible to choose a few parameters VN) whose self-consistency, that is, 
the equality at the beginning and at the end of the iteration 

v(N.O = J7fN.f) 

leads to the self-consistency of the potential 

zP)(r) = C(r). 

(8) 

Further, we intend to present a scheme of iterations that leads to the fastest self- 
consistent solution. Finally, we shall study the stability of the iterative process and 
when it is converging or diverging. 

2. PARAMETERS DEFINING THE POTENTIAL 

During the iterative process, the potential varies while some of its parameters remain 
fixed; for example, the atomic numbers Z, the ionicity of the molecule, and the 
interatomic distances. In addition to the fixed parameters, we want to find the free 
parameters that determine the potential as uniquely as possible. For practical reasons, 
the new parameters must be few in number and yet be able to determine u(r) almost 
completely. 

In the rest of this work, we choose the potentials seen by each nucleus as the free 
parameters. Thus, there are as many parameters as there are different atoms. We can 
present little justification for this choice except that it works. 

For an atomic calculation, there would be just one parameter for there is just a 
single nucleus. The potential at the nucleus is 

V = 8~ srn m(r) dr, 
0 
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where n(r) is the electronic density. The parameter reflects how the charge is distri- 
buted about the nucleus. Furthermore, the product ZV is the electron-nucleus 
energy, which is the most important term in the total energy of the atom. Achieving 
self-consistency is equivalent to finding the energy extreme; therefore it is not sur- 
prising that the potential seen by the nucleus determines the iterative process to a 
large extent. For multiatomic systems the arguments in favor of our choice remain 
valid, but, of course, the ultimate fact is that our parameters work. 

3. LINEAR THEORY OF THE ITERATIVE PROCESS IN THE CASE OF ONE PARAMETER 

Consider an atom, a molecule, or a crystal with just one atomic species. In this case, 
just one free parameter defines the potential. Then, instead of Eq. (2), we write 

y(f) = yy’i’ + c. (9) 

Knowing the parameters Vii), I’::; at the beginning of the iterations i and i - 1, and 
knowing the corresponding parameters Vif) and V,‘f: at the end, we use Eq. (9) to 
establish the value of T: 

Assuming that V determines the potential v(r) and that the latter is linear in V, 
Eq. (1) implies 

qyl zzz (1 - a) ,Y+ olV!f) 2 2 . 

Then we use Eqs. (9), (IO), and (11) to determine the difference 

A, 
z+1 

= ,!fJ - p+) 
2+1 2+1 

between the parameters at the beginning and at the end of iteration i 

where 

ap = l/(1 - T) 

is the Pratt value. One sees from Eq. (13) that convergence is faster when 

a = ap. 

(11) 

(1-a 

1 

(13) 

(14) 

In this case one would reach self-consistency in just one iteration. Of course, in an 
actual case, the parameter V does not determine the potential uniquely and the 
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linearity of Eq. (9) is not exactly true. Therefore an exact converged value would not 
occur at iteration i + 1. 

If one uses a value of (Y other than cu, , we obtain, after n iterations 

difn = (1 - OI/o# Lli . (15) 

Assuming tip is positive, the difference between the beginning and the end decreases if 

0 < 01 < 201,. 

If CY is chosen outside this interval, the iterative process diverges. 
This simple theory was used in connection with the self-consistent calculation of 

the N, molecule by the cellular method [5]. The atoms of this molecule being equal, 
one deals with only one parameter, the potential seen by either nuclei. In Fig. 2, 
we plot the pairs 

for several runs with different Q: and different starting points. For instance, the 
triangles are successive iterations with 01 = 0.70 starting from a Thomas-Fermi type 
of potential, and the squares were obtained from iterations with a = 0.50. Figure 2 
shows clearly two facts: 

1. The points fall along a definite curve with very small scatter, independently 
of the history of the iteration, the starting point, and the value of a used for the 
sequence of iterations. Thus, the existence of a function 

is confirmed. 

2. The curve is almost a straight line, showing that the linear theory is adequate. 

FIG. 2. Parameter at the end of iteration as function of parameter at beginning for the N, molecule 
and independent series of iterations. 
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4. A CONJECTURE ON THE STABILITY OF THE ITERATIVE PROCESS 

In Figs. 3a and b, we consider two different types of crossing between the function 

and the 45” dashed line. In Fig. 3a, the slope of the function at the crossing is less 
than one; in Fig. 3b, it is greater than one. In Fig. 3b, since 

one has 

T> 1, 

up < 0. 

In order to reach the self-consistent solution, one needs a value of 01 in the interval 

201, < 01 < 0, 

that is, a negative value. We intend to show how the crossing in Fig. 3b can represent 
a point of instability. 

Consider the molecule at the crossing of Fig. 3b and apply an external perturbing 
potential. Then define the parameter V so that it is zero at the crossing. The effect 
of the external perturbation is to shift the solution, or shift the value of the parameter 
from its zero value at the crossing. This shift can be calculated in the following way. 
Let Vi) be the shift of the potential at the beginning of the iteration. At the end of 
the iteration, the shift will be 

TV(i) 

plus the parameter P, corresponding to the external perturbing potential 

So, the new solution 

becomes 

V = P/(1 - T). 

~;>*a,’ (ii, ~yy,l 1; 
FIG. 3. Two types of self-consistent solutions. 



204 LUIZ G. FERREIRA 

Defining a proportionality ratio analogous to a dielectric constant 

one obtains 

K = P/V, 

K=I-T. 

As always, the stability requires a positive dielectric constant, or 

which implies 
T< 1, 

ap > 0. 

The argument above has a simple geometrical interpretation. The adding of an 
external perturbation is equivalent to displacing the V(f) curve vertically, as in 
Figs. 4a and b. This displacement moves the solution from 0 to 0’. In the case of 
Fig. 4a, a positive P implies a positive increase of the parameter of the solution. 
In the case of Fig. 4b, the molecule reacts in such a way that the parameter decreases. 

Points of instability are probably the reason for the slowness of the convergence of 
some self-consistent calculations. A recent example was shown to us in the calculation 
of GaAs by the augmented-plane-wave method [6], when the starting potential, 
which was a sum of atomic potentials, fell near a point of instability. In cases like this, 
the iterative process may be long; from the point of instability to a stable point. 

FIG. 4. Construction showing the stability of case (a) and instability in the case (b). 

5. LINEAR THEORY IN THE CASE OF MANY PARAMETERS 

We let VcN) represent the many parameters, and VjNyp’) and ViNcN,n the values at the 
beginning and at the end of the ith iteration, The linearity is now expressed as 

V’NJ’ = c TNMV(.W + C(N). (17) 
M 

At the end of iteration i, we know the values of the parameters at beginning and end 
for all the previous iterations. Using Eq. (17), we establish the relations 
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From Eq. (18), we determine the matrix TN,+, , which plays a role similar to that of T, 
for which we had just a single parameter. 

To reach self-consistency rapidly, we will not only mix the potentials of the ith 
iteration but of previous iterations as well. So, instead of Eq. (l), we will prepare the 
initial potential for the i + 1 iteration in the following way: 

As many iterations will be summed as there are parameters. The y’s are weights that 
add up to one: 

c Y&l-n = 1. cw 
n 

Equation (19) implies the following initial values of the parameters for the i + 1 
iteration 

Inserting Eq. (21) in Eq. (17), we obtain l’j:N;“. Then, defining 

we arrive at the equation 

A!N’ = v!N.f) _ v!N.i) 
2+1 Z+l t+1 9 (22) 

First of all, the iterative process will be faster when 01 and y are:chosen so that 

A@’ = () 
2+1 ' 

Let Q+ be the value of 01 that satisfies Eq. (24). Then Eq. (24) implies 

(24) 

c (TN, - M (l - ;) 6NM) AM = O, (25) 

where 

Then 

AN = C yi+l-nA%--n * P-3 
n 

1 - l/o+ 

is one of the eigenvalues of the matrix TNM . The size of the matrix is equal to the 
number of parameters, so there are as many possible values c# as there are parameters. 
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If one of the eigenvalues a’p”’ is negative, the iterative process is diverging because one 
is near an unstable point. Barring this circumstance, the c+? will all be positive. As 
will be seen shortly, in order to obtain a converging iterative process, one must choose 
the smallest eigenvalue a$‘. Once the value a+ is chosen, Eq. (26) is solved for the AM . 
Then Eq. (25), together with Eq. (20), is solved for y. The initial potential for the 
next iteration is then constructed according to Eq. (19). 

Assuming we have chosen a and y different from the eigenvalues L$) and the 
corresponding eigenvectors #& , the set of yi+l-n can be expanded in terms of the 
set of eigenvectors #,n , 

(27) 

According to Eq. (20) 

Then it is a simple matter to show that 

where A$’ are the eigenvectors of Eq. (26). Equation (29) shows that the iterative 
process is diverging if 01 is greater than twice the smallest eigenvalue a$), because 
repeated iterations would increase the deviations d lN) due to the increasing powers of 

1 - +!jl). 

The theory above was tested in a self-consistent calculation of the molecule CO 
by the cellular method. In this case there are two parameters, the potentials seen by 
each nucleus. We first made a run of 20 iterations according to Eq. (1) with (y. = 0.31. 
The starting potential was of the Thomas-Fermi type. In Table I, we tabulate the 
deviations 

n(N) = V(N.f) _ V(N.i) 

for each iteration, the total energy of the molecule E, and the energies Ed , Ed of the 
two highest occupied one-electron states. For each three consecutive iterations of the 
first run, we used Eq. (18) to determine the matrix TNM , Eq. (26) to determine the 
eigenvalues c$) and &, and Eqs. (25) and (20) to determine the y’s corresponding 
to the smallest eigenvalue. Then a single iteration was made according to Eq. (19). In 
Table I, the iteration 4’ is based on iterations 1, 2, and 3; the iteration 5’ is based on 
2,3, and 4, but not 4’. Thus the primed iterations begin from the immediately anterior 
three unprimed iterations. Finally, we run the iterations 5” and 6” which are based 
on the iterations 2, 3, 4’ and 3, 4’, 5”, respectively. These double-primed iterations 
form the iterative sequence according to the present method. 
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Table I shows that the linear theory is adequate. Indeed, the fact that C+ remains 
approximately constant means that VcJ) and V”~f) are indeed functions of Y(c*i) 
and V”si), and that these functions are linear. Second, Table I exhibits the im- 
provements brought about by using Eq. (19) instead of Eq. (1). 

6. CONCLUSION 

Reaching self-consistency in atoms or small molecules is very easy. When one 
comes to the molecules with many atoms, the smallest eigenvalue C& of Eq. (26) 
may be very small. In that case, the standard self-consistent iterative process, based 
on Eq. (I), may be unfeasible due to the necessity of using a very small value of CY,. 
Especially in this situation, one would use the present method and mix many iterations 
according to Eq. (19). 
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